
Journal of Computational Physics 228 (2009) 3917–3935
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Preconditioning methods for discontinuous Galerkin solutions
of the Navier–Stokes equations

Laslo T. Diosady *, David L. Darmofal
Aerospace Computational Design Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Ave. 37-401, Cambridge MA 02139, United States
a r t i c l e i n f o

Article history:
Received 2 July 2008
Received in revised form 1 December 2008
Accepted 3 February 2009
Available online 9 March 2009

Keywords:
Discontinuous Galerkin
Implicit solvers
GMRES
ILU factorization
Multigrid
In-place factorization
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.02.035

* Corresponding author.
E-mail addresses: diosady@mit.edu (L.T. Diosady
a b s t r a c t

A Newton–Krylov method is developed for the solution of the steady compressible Navier–
Stokes equations using a discontinuous Galerkin (DG) discretization on unstructured
meshes. Steady-state solutions are obtained using a Newton–Krylov approach where the
linear system at each iteration is solved using a restarted GMRES algorithm. Several differ-
ent preconditioners are examined to achieve fast convergence of the GMRES algorithm. An
element Line-Jacobi preconditioner is presented which solves a block-tridiagonal system
along lines of maximum coupling in the flow. An incomplete block-LU factorization
(Block-ILU(0)) is also presented as a preconditioner, where the factorization is performed
using a reordering of elements based upon the lines of maximum coupling. This reordering
is shown to be superior to standard reordering techniques (Nested Dissection, One-way
Dissection, Quotient Minimum Degree, Reverse Cuthill–Mckee) especially for viscous test
cases. The Block-ILU(0) factorization is performed in-place and an algorithm is presented
for the application of the linearization which reduces both the memory and CPU time over
the traditional dual matrix storage format. Additionally, a linear p-multigrid preconditioner
is also considered, where Block-Jacobi, Line-Jacobi and Block-ILU(0) are used as smoothers.
The linear multigrid preconditioner is shown to significantly improve convergence in term
of number of iterations and CPU time compared to a single-level Block-Jacobi or Line-Jacobi
preconditioner. Similarly the linear multigrid preconditioner with Block-ILU smoothing is
shown to reduce the number of linear iterations to achieve convergence over a single-level
Block-ILU(0) preconditioner, though no appreciable improvement in CPU time is shown.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Discontinuous Galerkin (DG) discretizations have become increasingly popular for achieving accurate solutions of conser-
vation laws. Specifically, DG discretizations have been widely used to solve the Euler and Navier–Stokes equations for con-
vection-dominated problems [6–8,13,14,5]. DG methods are attractive since the elementwise discontinuous representation
of the solution provides a natural way of achieving higher-order accuracy on arbitrary, unstructured meshes. A detailed over-
view of DG methods for the discretization of the Euler and Navier–Stokes equations is provided by Cockburn and Shu [14].
They, among others [21,30], have noted that while DG discretizations have been extensively studied, development of solu-
tion methods ideally suited for solving these discretizations have lagged behind.

The use of p-multigrid for the solution of a DG discretization of a two-dimensional convection problem was presented in
[22]. Fidkowski [19] and Fidkowski et al. [21] first used a multigrid strategy to solve DG discretizations of compressible
flows. They used a p-multigrid scheme with an element-line smoother to solve the non-linear system of equations. Recently,
. All rights reserved.

), darmofal@mit.edu (D.L. Darmofal).

mailto:diosady@mit.edu
mailto:darmofal@mit.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


3918 L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935
several other authors have used p-multigrid methods to solve DG discretizations of the Euler or Navier–Stokes equations
[23,30,29,26]. Nastase and Mavriplis [30,29] used both p-multigrid (where coarse solutions are formed by taking lower order
approximations within each element), and hp-multigrid, where an h-multigrid scheme was used to provide a solution update
for the p ¼ 0 approximation. Nastase and Mavriplis used this hp-multigrid scheme with an element Block-Jacobi smoother to
solve the non-linear system as well as to solve the linear system arising from a Newton scheme for the compressible Euler
equations.

The Newton-GMRES approach has been widely used for finite volume discretizations of the Euler and Navier–Stokes
equations [1,12,11,39,27,25,31]. In the context of DG discretizations, GMRES was first used to solve the steady 2D compress-
ible Navier–Stokes equations by Bassi and Rebay [8,9]. GMRES has also been used for the solution of the linear system arising
at each iteration of an implicit time stepping scheme for the DG discretization of the time dependent Euler or Navier–Stokes
equations [40,17,36,38]. Persson and Peraire [36,38] developed a two level scheme as a preconditioner to GMRES to solve the
linear system at each step of an implicit time stepping scheme. They used an ILU(0) smoother for the desired p and solved a
coarse grid problem (p ¼ 0 or p ¼ 1) exactly.

Much of the work in the development of solvers for DG discretizations has built upon ideas developed for finite difference
or finite volume discretizations. While solution methods developed for finite difference or finite volume discretizations may
be adapted to solve DG discretizations, Persson and Peraire [38] noted that the matrix structure arising from DG discretiza-
tions has a block structure which may be exploited to develop a more efficient solver. This work examines several precon-
ditioners which take advantage of the block structure of the Jacobian matrix for the solution of the steady-state Euler and
Navier–Stokes equations. While results presented here are used to solve steady-state problems, the methods are also suit-
able for solving time dependent problems.

This paper is a completion of work originally presented in [15]. Section 2 provides an overview of the DG discretization
and the Newton–Krylov approach for solving systems of non-linear conservation laws. Section 3 presents the Block-Jacobi,
Line-Jacobi and Block-ILU(0) stationary iterative methods that are used as single-level preconditioners or as smoothers on
each level of the linear multigrid preconditioner. By considering the Block-ILU preconditioner as a stationary iterative meth-
od, a memory efficient implementation is developed which requires no additional storage for the incomplete factorization,
while reducing the total time required per linear iteration compared to the traditional dual matrix storage format. Section 4
presents a new matrix reordering algorithm for the Block-ILU factorization based upon lines of maximum coupling between
elements in the flow. This line reordering algorithm is shown to significantly improve the convergence behaviour, especially
for viscous problems. Section 5 presents the linear multigrid algorithm and discusses memory considerations involved in the
development of a memory efficient preconditioner. Finally, Section 6 presents numerical results comparing the convergence
of the different preconditioning algorithms.
2. Solution method

2.1. DG discretization

The time dependent, compressible Navier–Stokes equations using index notation are given by:
@tuk þ @iFkiðuÞ � @iF
v
kiðuÞ ¼ 0; k 2 ½1;ns�; ð1Þ
where uk is the kth component of the conservative state vector u ¼ ½q;qv i;qE�;q is the density, v i are the components of the
velocity, and E is the total energy. The size of the conservative state vector ns, is 4 and 5, for two- and three-dimensional
flows, respectively (assuming turbulence modeling or other equations are not included). FkiðuÞ and Fv

kiðuÞ are inviscid and
viscous flux components, respectively, such that Eq. (1) is a compact notation for the conservation of mass, momentum,
and energy.

The DG discretization of the Navier–Stokes equations is obtained by choosing a triangulation Th of the computational do-
main X composed of triangular elements j, and obtaining a solution in Vp

h, the space of piecewise polynomials of order p,
which satisfies the weak form of the equation. We define uh to be the approximate solution in ðVp

hÞ
ns , while vh 2 ðVp

hÞ
ns is

an arbitrary test function. The weak form is obtained by multiplying Eq. (1) by the test functions and integrating over all
elements. The weak form is given by
X

j2Th

Z
j

vk@tukdxþRhðuh;vhÞ ¼ 0; ð2Þ
where
Rhðuh;vhÞ ¼
X
j2Th

½Ejðuh;vhÞ þVjðuh;vhÞ�; ð3Þ

Ejðuh;vhÞ ¼ �
Z

j
@ivkFkidxþ

Z
@j

vþk bF ki uþh ;u
�
h

� �
n̂ids ð4Þ
and Vjðuh;vhÞ is the discretization of the viscous terms. In Eq. (4), ðÞþ and ðÞ� denote values taken from the inside and out-
side faces of an element, while n̂ is the outward-pointing unit normal. bF kiðuþh ;u�h Þn̂i is the Roe numerical flux function



L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935 3919
approximating Fkin̂i on the element boundary faces [41]. The viscous terms, Vjðuh;vhÞ are discretized using the BR2 scheme
of Bassi and Rebay [8]. The BR2 scheme is used because it achieves optimal order of accuracy while maintaining a compact
stencil with only nearest neighbour coupling. Further details of the discretization of the viscous terms may be found in Fid-
kowski et al. [21].

The discrete form of the equations is obtained by choosing a basis for the space Vp
h. The solution vector uhðx; tÞ may then

be expressed as a linear combination of basis functions vhi
ðxÞ where the coefficients of expansion are given by the discrete

solution vector UhðtÞ, such that:
Table 1
Numbe

p

nm , 2D

nm , 3D
uhðx; tÞ ¼
X

i

Uhi
ðtÞvhi

ðxÞ: ð5Þ
Two sets of basis functions are used in the context of this work: a nodal Lagrange basis and a hierarchical basis. Further de-
tails of the bases may be found in Fidkowski et al. [21].

Given a basis for the space Vp
h, the weak form of the Navier–Stokes equations given in Eq. (2) can be written in semi-dis-

crete form as:
Mh
dUh

dt
þ RhðUhðtÞÞ ¼ 0; ð6Þ
where Rh is the discrete non-linear residual such that RhðUhÞi ¼ Rhðuh;vhi
Þ, while Mh is the mass matrix given by
Mhij
¼
Z

j
vhi

vhj
dx: ð7Þ
Since the basis functions are piecewise polynomials which are non-zero only within a single element, the mass matrix is
block-diagonal.

To discretize Eq. (6) in time, we introduce a time integration scheme given by:
Umþ1
h ¼ Um

h �
1
Dt
Mh þ

@Rh

@Uh

� ��1

RhðUm
h Þ: ð8Þ
A steady-state solution of the Navier–Stokes equations is given by Uh satisfying:
RhðUhÞ ¼ 0: ð9Þ
The steady-state solution is obtained by using the time integration scheme given in Eq. (8) and increasing the time step
Dt, such that Dt !1. Directly setting Dt ¼ 1 is the equivalent of using Newton’s method to solve Eq. (9), however conver-
gence is unlikely if the initial guess is far from the solution. On the other hand, if the solution is updated using Eq. (8), then
the intermediate solutions approximate physical states in the time evolution of the flow, and convergence is more likely.

2.2. Linear system

The time integration scheme given by Eq. (8) requires the solution of a large system of linear equations of the form Ax ¼ b
at each time step, where
A ¼ 1
Dt
Mh þ

@Rh

@Uh
; x ¼ DUm

h ; b ¼ �RhðUm
h Þ: ð10Þ
The matrix A is commonly refered to as the Jacobian matrix. Since the Jacobian matrix is derived from the DG discreti-
zation, the Jacobian matrix has a block-sparse structure with Ne block rows of size nb, where Ne is the number of elements
in the triangulation Th, while nb is the number of unknowns for each element. Here nb ¼ ns � nm, where nm is the number of
modes per state. nm is a function of the solution order p and the spatial dimension, as summarized in Table 1. Each block row
of the Jacobian matrix has a non-zero diagonal block, corresponding to the coupling of states within each element, and nf off-
diagonal non-zero blocks corresponding to the coupling of states between neighbouring elements, where nf is the number of
faces per element (3 and 4 for 2D triangular and 3D tetrahedral elements, respectively). When the time step, Dt, is small, the
Jacobian matrix is block-diagonally dominant and the linear system is relatively easy to solve iteratively. On the other hand
as the time step increases the coupling between neighbouring elements becomes increasingly important and the linear sys-
tem generally becomes more difficult to solve.
r of modes per element, nm , as a function of solution order, p.

0 1 2 3 4 p

1 3 6 10 15 ðpþ1Þðpþ2Þ
2

1 4 10 20 35 ðpþ1Þðpþ2Þðpþ3Þ
6



3920 L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935
2.3. Linear solution method

The block-sparse structure of the Jacobian matrix and the large number of unknowns suggest the use of an iterative meth-
od, more specifically a Krylov-subspace method, to solve the linear system. Since the Jacobian matrix is non-symmetric
(though structurally symmetric), the method of choice is the restarted GMRES [43,42] algorithm which finds an approximate
solution, ~x, in the Krylov subspace, K ¼ fb;Ab;A2b; . . . ;An�1bg, that minimizes the L � 2 norm of the linear residual
r ¼ b� A~x.

The convergence of the GMRES algorithm has been shown to be strongly dependent upon eigenvalues of the Jacobian ma-
trix, A [43,42,44]. To improve the convergence properties of GMRES, a preconditioner is used which transforms the linear
system Ax ¼ b into a related system with better convergence properties. In this work, only left preconditioning is used,
where the linear system is multiplied on the left by a preconditioner P�1, resulting in the linear system: P�1Ax ¼ P�1b.
Though the preconditioner, P, is presented as a matrix, any iterative method may be used as a preconditioner.

2.4. Residual tolerance criterion

When solving the DG discretization of the steady-state Navier–Stokes equations using the time stepping scheme pre-
sented in Eq. (8), it is often unnecessary to solve the linear system of equations exactly at each iteration. When the time step
is small, or the solution estimate is far from the exact solution, the linear system only needs to be solved to a limited toler-
ance, which depends upon the non-linear residual. Kelley and Keyes [24] considered three phases of a time stepping scheme
to solve the steady-state Euler equations: the initial, midrange, and terminal phases. Kelley and Keyes proved super-linear
convergence of the non-linear residual in the terminal phase of an inexact Newton iteration given sufficient reduction of the
linear residual in each iteration. In this section, an exit criterion is developed for the solution of the linear system to realize
the super-linear convergence during the terminal phase. To develop this exit criterion, we consider the convergence of New-
ton’s method to solve Eq. (9), such that the solution update is given by:
Umþ1
h ¼ Um

h �
@Rh

@Uh

� ��1

RhðUm
h Þ; ð11Þ
where Um
h is the approximate solution at iteration m of Newton’s method. Defining �m

h ¼ Uh � Um
h to be the solution error at

iteration m, quadratic convergence of the error can be proven as �m
h ! 0. Namely,
�mþ1
h

�� �� ¼ C1 �m
h

�� ��2 ð12Þ
for some constant C1 [24]. Similarly quadratic convergence of the solution residual is observed,
RhðUmþ1
h Þ

��� ��� ¼ C2 RhðUm
h Þ

�� ��2 ð13Þ
for some different constant C2. Based on this observation, an estimate of the reduction in the solution residual may be given
by:
RhðUmþ1
h Þ

��� ���
RhðUm

h Þ
�� �� � RhðUm

h Þ
�� ��
RhðUm�1

h Þ
��� ���

0
B@

1
CA

2

¼ ðdmÞ2; ð14Þ
where dm ¼ RhðUm
h Þk k

RhðUm�1
h Þk k, is the decrease factor of the non-linear residual at iteration m. When the expected decrease of the non-

linear residual is small, it may not be necessary to solve the linear system at each Newton step exactly to get an adequate
solution update. It is proposed that the linear system given by Ahxh ¼ bh should have a reduction in linear residual propor-
tional to the expected decrease in the non-linear residual. Defining the linear residual at linear iteration k to be
rk

h ¼ bh � Ahxk
h, the linear system is solved to a tolerance of:
rn
h

�� ��
r0

h

�� �� 6 KðdmÞ2; ð15Þ
where K is a user defined constant, typically chosen in the range K ¼ ½10�3;10�2�. Since left preconditioning is used, the linear
residual is not available at each GMRES iteration and computing this linear residual can be computationally expensive. As a
result, the preconditioned linear residual norm, P�1ðbh � Ahxk

hÞ
��� ���, is used, which can be computed essentially for free at each

GMRES iteration. The reduction in the preconditioned residual also provides an estimate of the reduction of the norm of the
linear solution error, A�1

h b� xk
h

��� ���, since
ðA�1
h bh � xk

hÞ
��� ���
ðA�1

h bh � x0
hÞ

��� ��� ¼
A�1

h P
� �

P�1ðbh � Ahxk
hÞ

� ���� ���
A�1

h P
� �

P�1ðbh � Ahx0
hÞ

� ���� ��� 6 j P�1Ah

� � P�1ðbh � Ahxk
hÞ

��� ���
P�1ðbh � Ahx0

hÞ
��� ��� ; ð16Þ



L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935 3921
where jðP�1AhÞ is the condition number of P�1Ah. With increasingly effective preconditioning, P�1Ah approaches the identity
matrix and the reduction in the preconditioner residual norm more closely approximates the reduction in the linear solution
error.

Since the non-linear residual may increase at some iteration m, the tolerance for the linear system presented in Eq. (15) is
modified to be:
Table 2
Block-Ja

Operati

Form F

x ¼ M�

y ¼ Mx

y ¼ Nx

y ¼ Ax
P�1rn
h

��� ���
P�1r0

h

��� ��� 6 Kðminf1;dmgÞ2: ð17Þ
This criterion for the reduction of the linear residual is then used to determine n, the number of GMRES iterations to per-
form each Newton step.

3. In-place preconditioning

3.1. Stationary iterative methods

Stationary iterative methods used to solve the system of linear equations Ax ¼ b involve splitting the matrix A into two
parts such that A ¼ M þ N, where M in some sense approximates the matrix A and is relatively easy to invert. Since an iter-
ative scheme is typically used directly as a preconditioner to GMRES, M is commonly referred to as the preconditioning ma-
trix. Applying a stationary iterative method, x is updated using
xkþ1 ¼ ð1�xÞxk þxM�1ðb� NxkÞ; ð18Þ
where x is the under relaxation factor. An equivalent form of Eq. (18) is
xkþ1 ¼ xk þxM�1rk; ð19Þ
where rk is the linear residual given by
rk ¼ b� Axk: ð20Þ
In practice, stationary iterative methods involve a preprocessing stage and an iterative stage. The iterative stage involves
repeated solution updates according to Eq. (18) or Eq. (19), where Eq. (18) is used if the application of N is computationally
less expensive than the application of A, otherwise Eq. (19) is used. In addition, if the stationary iterative method is used as a
smoother for linear multigrid, then the iterative stage will involve repeated calculation of the linear residual, r, using Eq. (20).
In the preprocessing stage the matrix A is factorized such that the application of M�1;M;N and A in Eqs. ()()()(18)–(20) may
be evaluated at a fraction of the computational cost of the preprocessing stage. In our implementation, the preprocessing
stage is performed in place such that the original matrix A is rewritten with a factorization F. As a result the iterative method
uses only the memory required to store the original matrix A, with no additional memory storage required for M;M�1 or N.

3.2. Block-Jacobi solver

The first and most basic stationary iterative method used in this work is a Block-Jacobi solver. The Block-Jacobi solver is
given by choosing M to be the block-diagonal of the matrix A. In the preprocessing stage each diagonal block is LU factorized
and the factorization, F, is stored, where
F ¼
LUðA11Þ A12 A13

A21 LUðA22Þ A23

A31 A32 LUðA33Þ

2
64

3
75: ð21Þ
This factorization allows for the easy application of both M and M�1 during the iterative stage. N is given by the off-diag-
onal blocks of A which are not modified in the preprocessing stage. Table 2 gives the asymptotic operation counts per ele-
ment for forming F (given A), as well as the application of M�1;M;N and A. The operation counts presented in Table 2 are
cobi solver asymptotic operation count per element.

on Operation count 2D 3D

2
3 n3

b
2
3 n3

b
2
3 n3

b
1x 2n2

b 2n2
b 2n2

b

2n2
b 2n2

b 2n2
b

2nf n2
b 6n2

b 8n2
b

2ðnf þ 1Þn2
b 8n2

b 10n2
b



3922 L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935
asymptotic estimates, in that lower order terms in nb have been ignored. The application of A is computed as the sum of the
applications of M and N. Thus, the Block-Jacobi iterative step uses Eq. (18), since the application of A is computationally more
expensive than the application of N.

3.3. Line-Jacobi solver

The second stationary iterative method presented in this work is a Line-Jacobi solver. The Line-Jacobi solver is given by
forming lines of maximum coupling between elements and solving a block-tridiagonal system along each line. The coupling
between elements is determined by using a p ¼ 0 discretization of the scalar transport equation:
Table 3
Line-Jac

Operati

Form F

x ¼ M�

y ¼ Mx

y ¼ Nx

y ¼ Ax
r � ðqu/Þ � r � ðlr/Þ ¼ 0: ð22Þ
The lines are formed by connecting neighbouring elements with maximum coupling. For purely convective flows, the
lines are in the direction of streamlines in the flow. For viscous flows solved using anisotropic grids, the lines within the
boundary layer are often in non-streamline directions. Further details of the line formation algorithm are presented in
the theses of Fidkowski [19] and Oliver [33].

For the Line-Jacobi solver, M is given by the block-tridiagonal systems corresponding to the lines of maximum coupling,
while N is given by the blocks associated with the coupling between elements across different lines. In the preprocessing
stage, M is factorized using a block-variant of the Thomas algorithm given by:
F ¼
LUðA11Þ A12 A13

A21 LU A022

� �
A23

A31 A32 LU A033

� �
2
64

3
75; ð23Þ
where A022 ¼ A22 � A21A�1
11 A12 and A033 ¼ A33 � A32A0�1

22 A23. The corresponding LU factorization of M is given by:
M ¼
A11 A12

A21 A22 A23

A32 A33

2
64

3
75 ¼

I

A21A�1
11 I

A32A0�1
22 I

2
64

3
75

A11 A12

A022 A23

A033

2
64

3
75: ð24Þ
The factorization given by Eq. (23) is stored as opposed to the LU factorization given by Eq. (24) to reduce the computa-
tional cost of the preprocessing stage. The reduction in computational cost of storing the factorization given by Eq. (23) is
offset by an increase in the computational cost of applying M and M�1 during the iterative stage. The total computational
cost for both the preprocessing and iterative stages using the factorization given by Eq. (23) is lower than the LU factorization
given by Eq. (24), as long as the total number of linear iterations is less than the block size, nb.

Table 3 gives the asymptotic operation counts per element for the preprocessing stage as well as the application of
M�1;M;N and A. The application of A is once again computed as a sum of the applications of M and N. As with the Block-Ja-
cobi solver, the solution update for the Line-Jacobi solver is given by Eq. (18), since the application of N is computationally
less expensive than the application of A.

3.4. Block-ILU solver

The final iterative method presented in this work is a block incomplete-LU factorization (Block-ILU). ILU factorizations
have been successfully used as preconditioners for a variety of aerodynamic problems [1,11,39,27,25,36,31]. Typically the
LU factorization of a sparse matrix will have a sparsity pattern with significantly more non-zeros, or fill, than the original
matrix. The principle of an incomplete-LU factorization is to produce an approximation of the LU factorization of A, which
requires significantly less fill than the exact LU factorization. The incomplete LU factorization, eL eU , is computed by perform-
ing Gaussian elimination on A but ignoring values which would result in additional fill. The fill level, k, indicates the distance
in the sparsity graph of the neighbours in which coupling may be introduced in the ILU(k) factorization. In the context of this
work ILU(0) is used, hence no additional fill outside the sparsity pattern of A is permitted. To simplify the notation, for the
remainder of this work we use ILU to denote an ILU(0) factorization unless explicitly stated otherwise.
obi solver asymptotic operation count per element.

on Operation count 2D 3D

14
3 n3

b
14
3 n3

b
14
3 n3

b
1x 8n2

b 8n2
b 8n2

b

8n2
b 8n2

b 8n2
b

2ðnf � 2Þn2
b 2n2

b 4n2
b

2ðnf þ 2Þn2
b 10n2

b 12n2
b



L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935 3923
Though incomplete-LU factorizations are widely used, most implementations store both the linearization A and the
incomplete factorization eL eU . Since in most aerodynamic applications the majority of the memory is used for the storage
of the linearization and its factorization, such duplicate memory storage may limit the size of the problems which may
be solved on a given machine [11,28,36]. In this section, an algorithm is developed that performs the incomplete-LU factor-
ization in-place, such that no additional memory is required for the storage of the factorization. This in-place storage format
is an enabling feature which allows for the solution of larger and more complex problems on a given machine. Assuming the
majority of the memory is used for the storage of the Jacobian matrix and the Krylov vectors, the increase in the size of the
problem which may be solved on a given machine is given by 2þg

1þg, where g is the ratio of the memory required to store the
Krylov vectors to the memory required to store the Jacobian matrix. For a typical range g 2 ½0:1;1:0�, this represents an in-
crease of 50–90% in the size of problem which may be solved.

To develop an ILU implementation where the memory usage is no greater than that required for the Jacobian, we consider
the ILU factorization as a stationary iterative method. In the context of stationary iterative methods, M is given by the prod-
uct eL eU . It can be easily shown that A differs from M only where fill is dropped in the incomplete LU factorization. Corre-
spondingly, N is given by a matrix containing all fill which was ignored in the ILU factorization. Namely, defining the
sparsity of the matrix A by:
SðAÞ � fði; jÞ : Aij – 0g:
It is easily shown that:
A ¼ M þ N ¼ eL eU þ N SðAÞ–SðMÞ–SðNÞ;
where
Aij ¼ Mij ¼ ðeL eUÞij 8ði; jÞ 2 SðAÞ;
Mij þ Nij ¼ ðeL eUÞij þ Nij ¼ 0 8ði; jÞ R SðAÞ:
To construct an in-place storage for ILU, note that both A and N may be reconstructed from eL and eU given the original
sparsity pattern of A. Namely, A may be computed by taking the product eL eU and ignoring those values not within the original
sparsity pattern. Similarly N may be computed by taking the values of �eL eU outside the sparsity pattern of A. Though recom-
puting A and N in this manner is possible, it is impractical since the computational cost is of the same order as the original
ILU factorization and requires additional memory storage. Fortunately, only the application of A or N is required, and these
products can be computed efficiently using eL and eU .

The remainder of this section describes the implementation and computational efficiency of the in-place Block-ILU solver.
The operation count estimates for the Block-ILU solver is based on the assumption that neighbours of an element do not
neighbour one another. This assumption leads to the fact that the upper triangular part of A and eU are identical. Persson
and Peraire [38] took advantage of this property by developing a solver which stored eL;A and the LU factors of the block diag-
onal of eU . Where the assumption that neighbours of an element do not neighbour one another failed they simply ignored the
connection between those neighbouring element, noting that it is only an incomplete factorization. The Block-ILU(0) solver
presented in this work essentially takes advantage of this same property, but only eL and eU are stored. Additionally, the
assumption that neighbours of an element do not neighbour one another is only used for operational count analysis while
the actual implementation does not make this assumption.

In the preprocessing stage, the block incomplete-LU factorization of A is performed in-place where A is replaced by the
factorization F. An example of one step of the factorization is given below:
A11 A13 A15 A16

A22

A31 A33

A44

A51 A55

A61 A66

2
666666664

3
777777775
)

LUðA11Þ A13 A15 A16

A22

ðA31A�1
11 Þ A033

A44

ðA51A�1
11 Þ A055

ðA61A�1
11 Þ A066

2
6666666664

3
7777777775
;

where A033 ¼ A33 � A31A�1
11 A13;A

0
55 ¼ A55 � A51A�1

11 A15, and A066 ¼ A66 � A61A�1
11 A16. Based on the assumption that neighbours of

an element do not neighbour one another, only two of the blocks Aij, Aik, and Ajk may be non-zero for any i–j–k. This implies
that when eliminating row i only elements Aji and Ajj; j P i are modified. In addition, fill is ignored at Ajk and Akj, if elements
j; k > i both neighbour element i. In the general case where the assumption is violated, Ajk and Akj are non-zero, and these
terms are modified in the Block-ILU factorization such that: A0jk ¼ Ajk � AjiA

�1
ii Aik and A0kj ¼ Akj � AkiA

�1
ii Aij. The number of

non-zero blocks in the matrix N is given by
PNe

i¼1~nfi ð~nfi � 1Þ where, ~nfi
is the number of larger ordered neighbours of element

i. While the number of non-zero blocks is dependent upon the ordering of the elements in the ILU factorization, it is possible
to obtain an estimate by assuming an ordering exists where, ~nfi ¼ i

Ne
nf

l m
. The corresponding estimate for the number of non-

zero blocks in N is Neðn2
f � 1Þ=3.



3924 L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935
In the iterative stage, the application of M�1 is performed using backward and forward substitution of eL and eU . The appli-
cation of A is performed by multiplying by those components of eL and eU which would not introduce fill outside the original
sparsity pattern of A. Similarly, the application of N may be performed by multiplying by the components of eL and eU which
introduce fill outside the original sparsity pattern of A.

The application of A and N is best illustrated with a simple example. Consider the 3� 3 matrix A below, and the corre-
sponding ILU factorization, eL eU:
A ¼
4 5 �6
8 3 0
�12 0 26

2
64

3
75; eL ¼ 1 0 0

2 1 0
�3 0 1

2
64

3
75; eU ¼ 4 5 �6

0 �7 0
0 0 8

2
64

3
75:
The corresponding matrices M;N and F are given by:
M ¼
4 5 �6
8 3 �12
�12 �15 26

2
64

3
75; N ¼

0 0 0
0 0 12
0 15 0

2
64

3
75; F ¼

4 5 �6
2 �7 0
�3 0 8

2
64

3
75
The application of A to a vector x, may be performed by multiplying x by those components of ~L and ~U which would not
introduce fill outside the original sparsity pattern of A. For the sample matrix, fill was ignored in the ILU factorization at (2,3)
and (3,2) when eliminating row 1. Hence, for the sample matrix the application of A may be performed as follows:
Clearly, the operation count for computing the application of A in this manner is more expensive than simply applying A
in the original form. However, it is important to recognize that in the case of block matrices, each of the terms eLij and eUij are
matrices and xi’s are vectors, and hence the (matrix–vector) multiplications become significantly more expensive than the
(vector) additions. Hence, to leading order, the computational cost is given by the number of matrix–vector multiplications.
The total number of multiplications may be reduced by recognizing that certain products ðeU11x1; eU12x2; eU13x3Þ are repeated.
Taking advantage of the structure of the matrix A, based on the assumption that neighbours of an element do not neighbour
one another, it is possible to show that the application of A using eL eU may be performed at a computational cost of
2 3

2 nf þ 1
� �

n2
bNe.

The application of N is performed by multiplying those components of eL and eU which would introduce fill outside the
original sparsity pattern of A. For the sample matrix, fill was ignored at (2,3) and (3,2) when eliminating row 1. Hence,
the application of N to a vector x may be performed as follows:
y1 ¼ 0;

y2 ¼ �eL21
eU13x3 ¼ �2ð�6x3Þ ¼ 12x3;

y3 ¼ �eL31
eU12x2 ¼ 3ð5x2Þ ¼ 15x2:
Once again, the computational cost is dominated by (matrix–vector) multiplications, and additional efficiency may be at-
tained by recognizing that some products may be repeated. The operation count for the application of N is a function of
~nfi

, the number of larger ordered faces of each element. While the operation count for the application of N is dependent upon
the ordering of the elements in the ILU factorization, it is possible to obtain an estimate by assuming an ordering exists
where, ~nfi ¼ i

Ne
nf

l m
. The corresponding estimate for the operation count for applying N is given by 2=3ðnf þ 4Þðnf � 1Þn2

bNe.
This estimate of the operation count for the application of N tends to overestimate actual operation counts for practical

computational grids. A revised estimate for the application of N may be obtained by considering a particular reordering algo-
rithm based on lines of maximum coupling which is presented in Section 4. Using the ordering of the elements based upon
lines effectively reduces the number of free faces for all but the first element in each line since at least one of the faces cor-
responds to a lower ordered neighbour. The revised estimate for the operation count for the application of N may then be
obtained by replacing nf by nf � 1 in the initial estimate given above. Namely, the revised estimate for the operation count
is given by: 2

3 ðnf þ 3Þðnf � 2Þn2
bNe.

Table 4 shows this revised estimate of the operation count for the application of N normalized by the operation count for
the application of A using the traditional dual matrix storage format, for both 2D and 3D problems. Table 4 also shows timing
results from several sample 2D and 3D problems. For each grid, timing results are presented for p ¼ 1 as well as the largest
value of p for which the Jacobian matrix could fit into memory on a single machine. For the p ¼ 1 cases the actual timing
results exceed the revised estimate. However, for large p the actual timing results closely match the revised estimate in
2D, and are bounded by the revised estimate in 3D. The poorer performance for the p ¼ 1 cases may be attributed to the
effects of lower order terms in nb, which become significant since the block size for the p ¼ 1 solution is relatively small.

Table 5 shows the asymptotic operation count per element for the preprocessing stage and components of the iterative
stage for the Block-ILU solver using the in-place storage format. Note that if the Block-ILU factorization eL eU is stored as a sep-



Table 4
Revised timing estimate for application of N for in-place Block-ILU(0) normalized by a Jacobian vector product.

Dim Type # Elements p Timing

2D Estimate 0.50
Structured 2432 1 0.78
Unstructured 7344 1 0.84
Cut cell 1250 1 0.69
Structured 2432 4 0.51
Unstructured 7344 4 0.52
Cut cell 1250 4 0.46

3D Estimate 0.93
Structured 1920 1 0.86
Unstructured 45,417 1 1.02
Cut cell 2883 1 0.98
Structured 1920 3 0.77
Cut cell 2883 3 0.85

Table 5
Block-ILU solver asymptotic operation count per element.

Operation Operation count 2D 3D

Form F 2ðnf þ 1Þn3
b 8n3

b 10n3
b

x ¼ M�1x 2ðnf þ 1Þn2
b 8n2

b 10n2
b

y ¼ Mx 2ðnf þ 1Þn2
b 8n2

b 10n2
b

y ¼ Nx (initial estimate) 2
3 ðnf þ 4Þðnf � 1Þn2

b 9 1
3 n2

b 16n2
b

y ¼ Nx (revised estimate) 2
3 ðnf þ 3Þðnf � 2Þn2

b 4n2
b 9 1

3 n2
b

y ¼ Ax 2ð32 nf þ 1Þn2
b 11n2

b 14n2
b

y ¼ Ax (full storage) 2ðnf þ 1Þn2
b 8n2

b 10n2
b

L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935 3925
arate matrix such that the original matrix A is still available, the cost of computing y ¼ Ax is 2ðnf þ 1ÞNen2
b . Based on the oper-

ation counts presented in Table 5, a linear iteration in 2D should be performed using Eq. (18) since the application of A is
more expensive than the application of N. Based on the initial estimate for the application of N, in 3D it appears as though
the cost of applying A is less than applying N and hence a linear iteration should be performed using Eq. (19). However, in
practice a linear iteration in 3D is also performed using Eq. (18) since the revised timing estimate for the application of N is
less than the application of A.

3.5. Timing performance

In the previous sections, timing estimates were presented in terms of the operations counts for the different components
of each solver. In addition, actual timing results were presented to validate the resived estimate for the ILU application of N.
Here all three preconditioners are compared using actual timing results obtained based on a sample 2D test grid with 2432
elements using a p ¼ 4 discretization. The actual and estimated timing results are presented in Table 6 where the time has
been normalized by the cost of a single matrix vector product of the Jacobian matrix. As shown in Table 6 the actual timing
results closely match the estimates based on operation counts.

Table 7 gives the asymptotic operation counts for the different solvers presented in this work. As shown in Table 7, the
operation count of performing a linear iteration using the in-place storage format is 25% and 5% less than that using the tra-
ditional dual matrix storage format for 2D and 3D, respectively. The in-place matrix storage format is superior to the tradi-
tional dual matrix storage format since the application of N is computationally less expensive than the application of A. In
this case, the dual storage format could be modified to store M and N as opposed to M and A, so that a linear iteration may be
performed according to Eq. (18). A linear iteration could then be performed faster using the modified dual matrix storage
Table 6
Solver asymptotic operation count per element normalized by a Jacobian vector product for p ¼ 4, 2432 element mesh.

Operation Block-Jacobi Line-Jacobi Block-ILU

Estimate Actual Estimate Actual Estimate Actual

x ¼ M�1x 0.25 0.39 1.00 1.24 1.00 1.16
y ¼ Nx 0.75 0.76 0.25 0.28 0.50 0.51
y ¼ Ax 1.00 1.14 1.25 1.34 1.38 1.43



Table 7
Linear iteration asymptotic operation count per element (in multiples of n2

b).

Preconditioner 2D 3D

Block-Jacobi 8 10
Line-Jacobi 10 12
Block-ILU in-place 12 19 1

3
Block-ILU dual storage 16 20

3926 L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935
format than the in-place matrix storage format. However, the modified dual matrix storage format would require computing
N in the preprocessing stage, such that the total computational time for both the preprocessing and iterative stages would
still be faster using the in-place storage format if fewer than approximately 3nb linear iterations are performed.

3.6. In-place ILU factorization of general matrices

The in-place ILU algorithm developed in this section has been tailored for DG discretizations and may not be generally
applicable to sparse matrices arising from other types of discretizations. While the application of A and N may be computed
using the ILU factorization for any sparse matrix, the use of an in-place factorization may be unfeasible due to the number of
operations required. The number of non-zero blocks in N and correspondingly, the computational cost for the application of
N scales with the square of the number of off-diagonal blocks in the stencil of A. Similarly, if the assumption that neighbours
of an element do not neighbour one another is removed, the operation count for the application of A using the ILU factor-
ization also scales with the square of the number of off-diagonal blocks in the stencil. The in-place ILU algorithm is feasible
for DG discretizations since there is only nearest neighbour coupling, resulting in a stencil with few off-diagonal blocks. On
the other hand, discretizations such as high-order finite volume discretizations have much wider stencils, involving 2nd and
3rd order neighbours [5,31], making the in-place ILU factorization algorithm unfeasible.

4. ILU reordering

In the development of an efficient Block-ILU(0) preconditioner for DG discretizations, the ordering of the equations and
unknowns in the linear system is critical. Matrix reordering techniques have been widely used to reduce fill in the LU fac-
torization for direct methods used to solve large sparse linear systems [42]. These reordering techniques have also been used
with ILU preconditioners of Krylov methods [11,39,10,31]. Benzi et al. [10] performed numerical experiments comparing the
effect of different reordering techniques on the convergence of three Krylov-subspace methods used to solve a finite differ-
ence discretization of a linear convection–diffusion problem. They showed that reordering the system of equations can both
reduce fill for the incomplete factorization, and improve the convergence properties of the iterative method [10]. Blanco and
Zingg [11] compared Reverse Cuthill–Mckee, Nested Dissection, and Quotient Minimum Degree reorderings for ILU(k) fac-
torizations of a finite volume discretization of the Euler Equations. They showed that the Reverse Cuthill–Mckee reordering
reduced the fill and resulted in faster convergence for ILU(2). Similarly, Pueyo and Zingg [39] used Reverse Cuthill–Mckee
reordering to reduce fill and achieve faster convergence for the finite volume discretization of the Navier–Stokes equations.
In the context of ILU(0) factorizations, no additional fill is introduced, hence reordering the system of equations effects only
the convergence properties of the iterative method. However, Benzi et al. [10] showed that even for ILU(0), reordering the
systems of equations can significantly reduce the number of GMRES iterations required to reach convergence. In the context
of ILU factorizations for DG discretizations, Persson and Peraire developed a reordering algorithm for the Navier–Stokes
equations that performed well over a wide range of Mach and Reynolds numbers [38]. This reordering algorithm was based
on minimizing the magnitude of the discarded fill in the ILU(0) factorization.

In this section, we present a new matrix reordering algorithm for the DG discretization of the Navier–Stokes equations
based upon lines of maximum coupling within the flow. This ordering algorithm is motivated by the success of line solvers
for both finite volume and DG discretizations [27,20]. We note that the lines of maximum coupling will produce an ILU(0)
preconditioner in which the magnitude of the dropped fill will often be small because of the weaker coupling in the off-line
directions. For Persson and Peraire’s minimum discarded fill algorithm, the magnitude of the fill for each block was quanti-
fied using a Frobenius norm [38]. In our approach, we first reduce to a scalar p ¼ 0 convection–diffusion system and then
measure the coupling directly from the resulting matrix. This new reordering algorithm is compared with several standard
reordering techniques; Reverse Cuthill–Mckee, Nested-Dissection, One-Way Dissection, Quotient Minimum Degree and the
natural ordering produced by the grid generation. The numerical results for the standard matrix reordering algorithms were
determined using the PETSc package for numerical linear algebra [2,4,3].

4.1. Line reordering

The lines of maximum coupling described in Section 3.3 may be used to order the elements for ILU preconditioning. Spe-
cifically, the elements may be ordered as they are traversed along each line. Such an ordering of elements ensures that the



L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935 3927
coupling between elements within a line, captured by the Line-Jacobi preconditioner, is maintained. A line-ordered Block-
ILU preconditioner also captures some additional coupling between lines which is ignored by the Line-Jacobi preconditioner.
We note that the lines do not produce a unique reordering, since each line may be traversed in either the forward or back-
ward directions or the lines themselves may also be reordered. While a systematic approach may be developed to choose an
optimal permutation for the lines, the natural ordering produced by the line creation algorithm is used for the test cases pre-
sented. For these test cases, reordering the lines according to the standard reordering techniques (Reverse Cuthill–Mckee,
Nested-Dissection, One-Way Dissection and Quotient Minimum Degree) or reversing the direction of the lines from the nat-
ural ordering did not significantly impact the convergence rate.

4.2. Numerical results

To investigate the effectiveness of a reordering based upon lines, numerical results are presented for two representative
test cases: an inviscid transonic flow and a subsonic viscous flow. The convergence plots are presented in terms of the num-
ber of linear iterations since the computational cost of performing the ILU(0) factorization or a single linear iteration is inde-
pendent of the matrix reordering when using the traditional dual matrix storage format.

The first test case is an Euler solution of the transonic flow over the NACA 0012 airfoil at a freestream Mach number of
M ¼ 0:75 and angle of attack of a ¼ 2:0�. The flow is solved using a p ¼ 4 discretization on an unstructured mesh with 7344
elements. Fig. 1 shows the convergence plot of the non-linear residual starting from a converged p ¼ 3 solution. The fastest
convergence is achieved using the reordering based on lines, which requires only 946 linear iterations for a 10 order drop in
residual. One-Way Dissection and Reverse Cuthill–Mckee algorithms also perform well requiring only 1418 and 1611 iter-
ations to converge, respectively. On the other hand, Quotient Minimum Degree and Nested Dissection reorderings result in
convergence rates which are worse than the natural ordering of the elements. The second test case is a Navier–Stokes solu-
tion of the subsonic flow over the NACA0012 airfoil at zero angle of attack with a freestream Mach number of M ¼ 0:5 and a
Reynolds number of Re ¼ 1000. A p ¼ 4 solution is obtained on a computational mesh with 2432 elements, where the solu-
tion procedure is restarted from a converged p ¼ 3 solution. Fig. 2 presents the convergence plot of the non-linear residual
versus linear iterations. The reordering based upon lines is superior to all other reorderings; requiring only 341 iterations to
converge. The second best method for this test case is the natural ordering of elements which requires 1350 iterations. The
natural reordering performs well for this test case since a structured mesh is used (though the solution procedure does not
take advantage of the structure), and hence the natural ordering of the elements involves some inherent structure. Among
the other reordering algorithms, Reverse Cuthill–Mckee performs best, requiring 1675 iterations, followed by One-Way Dis-
section, Quotient Minimum Degree and finally Nested Dissection.

Clearly, reordering the elements according to the lines of maximum coupling results in superior convergence for both
inviscid and viscous test cases. The advantages of the line reordering algorithm is especially obvious in the viscous case
where reordering according to lines results in a convergence rate nearly 5 times faster than the standard matrix reordering
0 500 1000 1500 2000 2500 3000
10−14

10−12

10−10

10−8

10−6

10−4

10−2

Non−linear residual vs. Linear iterations
 1 Processors

Linear Iterations

N
on

−L
in

ea
r R

es
id

ua
l

Lines
NestedDissection
None
OneWayDissection
QuotientMinimumDegree
ReverseCuthillMckee

Fig. 1. Non-linear residual vs linear iterations using the Block-ILU(0) preconditioner with different reordering techniques for a transonic Euler solution of
the flow about the NACA0012 airfoil (7344 elements, p ¼ 4).



0 500 1000 1500 2000 2500 3000
10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

Non−linear residual vs. Linear iterations
 1 Processors

Linear Iterations

N
on

−L
in

ea
r R

es
id

ua
l

Lines
NestedDissection
None
OneWayDissection
QuotientMinimumDegree
ReverseCuthillMckee

Fig. 2. Non-linear residual vs linear iterations using the Block-ILU(0) preconditioner with different reordering techniques for a Navier–Stokes solution of
the flow about the NACA0012 airfoil (2432 elements, p ¼ 3).

3928 L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935
algorithms available in the PETSc package. Due to the clear success of the line reordering algorithm for these two sample
problems, the line reordering method is used for the remainder of the work presented here.

5. Linear multigrid

Multigrid algorithms are used to accelerate the solution of systems of equations arising from the discretization of a
PDE-based problem by applying corrections based on a coarser discretization with fewer degrees of freedom. The coarse
discretization may involve a computational mesh with fewer elements (h-multigrid) or a lower order solution space (p-
multigrid). The DG discretization naturally lends itself to a p-multigrid formulation as a coarser solution space may be
easily created by using a lower order polynomial interpolation within each element. Multigrid algorithms may be used
to directly solve a non-linear system of equations (non-linear multigrid), or to solve the system of linear equations arising
at each step of Newton’s method (linear multigrid). This section presents a linear p-multigrid algorithm which is used as a
preconditioner to GMRES and makes use of the stationary iterative methods presented in Section 3 as linear smoothers on
each multigrid level.

5.1. Linear multigrid algorithm

The basic two-level linear-multigrid algorithm is presented below. While only a two-level system is presented here, in
general the multigrid formulation involves multiple solution levels.

– Perform pre-smoothing: ~xk
h ¼ ð1�xÞxk

h þxM�1
h bh � Nhxk

h

� �
;

– Compute linear residual: ~r~k
h ¼ bh � Ah~xk

h;

– Restrict linear residual: bH ¼ Ih
H
~rk

h, where Ih
H is the restriction operator;

– Define coarse level correction: x0
H ¼ 0;

– Perform coarse level smoothing: xjþ1
H ¼ ð1�xÞxj

H þxM�1
H bH � NHxj

H

� �
;

– Prolongate coarse level correction: x̂k
h ¼ ~xk

h þ IH
h xH , where IH

h is the prolongation operator;

– Perform post-smoothing: xkþ1
h ¼ ð1�xÞx̂k

h þxM�1
h bh � Nhx̂k

h

� �
.

As presented in Section 2.1, the solution space for the DG discretization is given by Vp
h, the space of piecewise polynomials

of order p spanned by the basis functions vhi
. The corresponding coarse solution space is given by Vp�1

h , the space of piecewise
polynomials of order p� 1 spanned by the basis functions vHk

. Since Vp�1
h 2 Vp

h, the coarse level basis functions may be ex-
pressed as a linear combination of the fine level basis functions:



Table 8
Additio

Solution

p ¼ 1
p ¼ 2
p ¼ 3
p ¼ 4
p ¼ 5

L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935 3929
vHk
¼
X

i

aikvhi
: ð25Þ
The matrix of coefficients aik form the prolongation operator IH
h . The coefficients of expansion may also be used to define

the restriction operator by considering the restriction of a component of the residual:
Rhðuh;vHk
Þ ¼ Rhðuh;

X
i

aikvhi
Þ ¼

X
i

aikRhðuh;vhi
Þ: ð26Þ
Hence the restriction operator is given by Ih
H ¼ ðI

H
h Þ

T . In our implementation of the linear multigrid algorithm, the coarse
grid Jacobian AH is given by a simple Galerkin projection of the fine grid Jacobian:
AH ¼ Ih
HAhIH

h : ð27Þ
In this work the linear p-multigrid scheme is used as a preconditioner to GMRES. Multigrid levels are given by each p from
the solution order down to p ¼ 0. The multigrid preconditioner involves a single V-cycle where one pre- and post- smoothing
iteration is used on each multigrid level. On the coarsest multigrid level (p ¼ 0) a fixed number (5–10) smoothing iterations
are performed. Hence, in general the coarse problem is never solved exactly, however the preconditioner remains fixed at
each GMRES iteration.

5.2. Memory considerations

For a linear multigrid preconditioner significant additional memory is required for the storage of the lower order Jacobi-
ans on each multigrid level. Table 8 shows the additional memory required for all lower order Jacobians in terms of the fine
grid Jacobian for p ¼ 1! 5.

Several authors [28,19] have argued that a linear multigrid preconditioner may be unfeasible for large problems due to
the additional memory cost of storing these lower order Jacobians. Alternatively, others have advocated for skipping multi-
grid levels to reduce memory usage. For example, Persson and Peraire [36,38] employed a multi-level scheme where only
p ¼ 0 and p ¼ 1 corrections were applied. Though the linear multigrid method may require significant additional memory
for the storage of the lower order Jacobians, faster convergence of the GMRES method is expected and hence fewer Krylov
vectors may be required to obtain a converged solution. Hence, to provide a memory equivalent comparison between a sin-
gle- and multi-level preconditioner, the total memory usage for the Jacobians and Krylov vectors must be considered. In the
context of a restarted GMRES algorithm this is equivalent to increasing the GMRES restart value for the single-level precon-
ditioner so that the total memory used by the single and multi-level preconditioners is the same. Table 8 also gives the addi-
tional memory for the storage of all lower order Jacobians for the linear multigrid solver in terms of the number of solution
vectors on the fine grid. These values may also be viewed as the additional number of GMRES vectors allocated for the single-
level preconditioner to provide a memory equivalent comparison with the multigrid preconditioner.

6. Numerical results

The performance of the three preconditioners presented in Section 3, as well as the linear multigrid preconditioner pre-
sented in Section 5 are evaluated using three representative test cases: an inviscid transonic flow, a subsonic laminar viscous
flow, and a subsonic turbulent viscous flow.

6.1. Inviscid transonic flow over NACA0012 airfoil, M ¼ 0:75;a ¼ 2�

The first test case is an Euler solution of the transonic flow over the NACA0012 airfoil at an angle of attack of a ¼ 2� with a
free-stream Mach number of M ¼ 0:75. This flow involves a weak shock over the upper surface of the airfoil which is cap-
tured using an artificial viscosity approach similar to that presented by Persson and Peraire [37]. This approach involves add-
ing artificial viscosity of order h=p near the shock based on a non-linear shock indicator. This flow is solved using a
hierarchical basis on a set of three grids with 276, 1836 and 7344 element, respectively. Fig. 3 shows a portion of the coarse
grid and the corresponding p ¼ 4 solution of density on this grid.
nal memory usage for lower order Jacobians for linear multigrid as a percent of the fine grid Jacobian and number of fine grid solution vectors.

order % Fine Jacobian Solution vectors

2D 3D 2D 3D

11.1 6.25 5 6
27.7 17.0 27 43
46.0 29.3 74 146
64.9 42.2 156 369
84.1 55.5 283 778



Fig. 3. Computational grid and solution on coarse grid (276 elements, p ¼ 4) for NACA0012 transonic test case.

3930 L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935
Solutions are obtains for p ¼ 0;1;2;3;4, where each solution procedure, is initialized with the previously converged flow
solution at lower p except for p ¼ 0 which is initialized using free-stream values. The solution procedure is converged to a
non-linear residual value of 10�12. A GMRES restart value of 200 is used for the single-level preconditioners while memory
equivalent GMRES restart values of 195, 170, 125 and 40 are used for p = 1, 2, 3, and 4, respectively. The linear multigrid
preconditioner involves a single V-cycle, where one pre- and post- smoothing iteration is used on each multigrid level, while
five coarse level ðp ¼ 0Þ smoothing iterations are used. The number of linear iterations taken in each Newton step is deter-
mined by the tolerance criterion specified in Eq. (17) up to a maximum of 10 GMRES outer iterations.

Tables 9–11 show the convergence results for the different preconditioners in terms of the number of non-linear Newton
iterations, linear GMRES iteration and CPU time. The residual tolerance criterion developed in Section 2.3 ensures sufficient
convergence of the linear system in each Newton step so that super-linear convergence of the non-linear residual is ob-
served. Additionally, the residual tolerance criterion developed in Section 2.3 ensures that the convergence history of the
non-linear residual is the nearly the same for these preconditioners. Hence the number of non-linear iterations for each pre-
conditioner is the same for p ¼ 0—4 on the coarsest grid. While, on the medium grid the number of non-linear iterations is
nearly constant for each preconditioner except for p ¼ 3 where the Block-Jacobi preconditioner is unable to converge due to
stalling of the restarted GMRES algorithm. Similarly, for the finest grid, stalling of the restarted GMRES algorithm prevents
the convergence of the Block-Jacobi preconditioner for all but p ¼ 1, and the linear multigrid preconditioner with Block-Ja-
cobi smoothing for p ¼ 4.

Using the single-level Block-ILU preconditioner significantly reduces the number of linear iterations required to converge
compared to the single-level Line-Jacobi and Block-Jacobi preconditioners. This improved convergence using the Block-ILU
Table 9
Convergence results of the inviscid transonic NACA0012 coarse grid test case (276 elements). Iter: total non-linear iterations, GMRES: total number of linear
GMRES iterations, Time: total run time (s).

Block Line ILU MG-Block MG-Line MG-ILU

Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time

p = 0 36 15,797 2.9 36 6151 2.1 36 3703 1.9 – – – – – – – – –
p = 1 28 23,271 10.2 28 9412 4.7 28 4474 3.2 28 5842 5.4 28 3168 4.8 28 1905 3.8
p = 2 28 32,487 37.1 28 13,071 15.0 28 4606 8.2 28 6004 15.8 28 3453 13.3 28 1607 9.3
p = 3 30 33,853 75.4 30 13,041 28.6 30 5211 20.1 30 6343 37.7 30 3886 34.2 30 1999 25.7
p = 4 31 33,038 149.9 31 13,108 66.2 31 4938 47.2 31 5338 76.2 31 3142 67.5 31 1816 60.6

Table 10
Convergence results of the inviscid transonic NACA0012 medium grid test case (1836 elements). Iter: total non-linear iterations, GMRES: total number of linear
GMRES iterations, Time: total run time (min). ‘*’ denotes cases which did not converge due to stalling of restarted GMRES algorithm.

Block Line ILU MG-Block MG-Line MG-ILU

Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time

p = 0 50 63,737 1.0 50 20,590 0.4 50 11,092 0.3 – – – – – – – – –
p = 1 41 98,865 5.3 41 30,032 1.8 41 11,818 0.7 42 19,400 1.6 42 7447 1.0 41 4400 0.7
p = 2 33 80,081 10.2 32 25,232 3.4 32 10,314 1.5 33 14,817 3.5 35 6151 2.2 32 2720 1.4
p = 3 * * * 38 34,096 10.7 38 12,918 4.2 38 17182 9.4 38 6081 5.2 38 3305 4.0
p = 4 34 11,4381 64.5 32 24,854 16.2 32 9187 7.2 32 11779 17.2 34 4827 10.3 32 2247 8.0



Table 11
Convergence results of the inviscid transonic NACA0012 fine grid test case (7344 elements). Iter: total non-linear iterations, GMRES: total number of linear
GMRES iterations, Time: total run time (min). ‘*’ denotes cases which did not converge due to stalling of restarted GMRES algorithm.

Block Line ILU MG-Block MG-Line MG-ILU

Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time

p = 0 * * * 90 157,936 5.9 90 68,733 3.0 – – – – – – – – –
p = 1 52 204,664 58.2 56 71,766 24.8 55 25,445 7.1 50 31681 13.5 55 13,552 7.3 52 7661 4.4
p = 2 * * * 51 134,543 71.4 53 53,242 18.4 54 74,045 45.0 54 22,177 19.8 52 10,230 11.9
p = 3 * * * 37 53,768 108.7 37 15,879 25.1 37 20,900 65.1 37 6381 26.7 37 3489 18.1
p = 4 * * * 35 29,285 110.1 37 13,169 43.6 * * * 36 5476 53.7 36 3053 39.6

L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935 3931
preconditioner ensures that the GMRES restart value is reached less often. On the other hand, the GMRES restart value is
reached in nearly all Newton iterations for the Block-Jacobi preconditioner and most Newton iterations for the Line-Jacobi
preconditioner. The repeated restarting of the GMRES algorithm degrades the convergence rate and leads to the stalling of
the GMRES algorithm using the Block-Jacobi preconditioner. While both the preprocessing and the iterative stages of the
Block-ILU preconditioner are more expensive than the corresponding stages of the Line-Jacobi or Block-Jacobi precondition-
ers, the significant reduction in the number of linear iterations ensures that the Block-ILU preconditioner achieves fastest
convergence in terms of CPU time.

The linear multigrid preconditioners with Block-Jacobi, Line-Jacobi and Block-ILU smoothing significantly reduce the
number of linear iterations required to achieve convergence compared to the corresponding single-level preconditioners.
The improved convergence rate in terms of the number of linear iterations ensure that the GMRES restart value is not
reached as often for the multi-level preconditioners despite the memory equivalent GMRES restart value being smaller than
for the single-level preconditioners. Note that this is the case even for p ¼ 4 where the GMRES restart value for the single-
level preconditioner is five times larger than for the corresponding multigrid preconditioner. That the GMRES restart value is
not reached as often for the multigrid preconditioner ensures that GMRES stall is not seen as often with the linear multigrid
preconditioner using Block-Jacobi smoothing.

Though the linear multigrid preconditioner significantly reduces the number of linear iterations required to converge this
problem, the cost of each application of the linear multigrid preconditioner is more expensive than the single-level precon-
ditioner. For the coarsest grid, fastest convergence in the range p ¼ 1—4 is achieved by the Block-ILU preconditioner. On the
medium grid both Block-ILU and linear multigrid using Block-ILU smoothing perform equally well. While on the finest grid
fastest convergence is achieved using linear multigrid preconditioner with Block-ILU smoothing.

6.2. Viscous subsonic flow over NACA0005 airfoil, M ¼ 0:4;a ¼ 0�;Re ¼ 50000

The second test case is a Navier–Stokes solution of a subsonic, M ¼ 0:4 flow over the NACA0005 airfoil at zero angle of
attack with Reynolds number Re ¼ 50;000. A steady, laminar solution of this flow is obtained using an output based adap-
tation scheme using simplex cut-cell meshes [18]. Convergence studies are performed on grids 2, 4, 6 and 8 from the adap-
tation procedure, where solutions are obtains for p = 0, 1, 2, and 3 using a Lagrange basis on each grid. The four meshes for
which convergence results are presented have 3030, 3433, 4694 and 6020 elements, respectively. Fig. 4 shows a portion of
the grid # 2 and the corresponding p ¼ 3 solution of the Mach number on this grid.

The solution procedure is initialized with the previously converged flow solution at lower p except for p ¼ 0 which is ini-
tialized using free-stream values. A GMRES restart value of 120 is used for the single-level preconditioners, while a memory
equivalent 115, 90, and 40 GMRES iterations are used for the linear multigrid preconditioners for p = 1, 2 and 3, respectively.
The linear multigrid preconditioner involves a single V-cycle, where one pre- and post- smoothing iteration is used on each
multigrid level, while 5 coarse level (p ¼ 0) smoothing iterations are used. The non-linear residual is converged to a tolerance
of 10�10, while the linear system at each Newton iteration is converged based on the criterion described in Section 2.3. The
convergence data for the four grids are summarized in Tables 12–15.
Fig. 4. Computational grid and solution on grid # 2 for NACA0005 viscous test case (3030 elements, p ¼ 3).



Table 12
Convergence results of the viscous NACA0005 test case with adapted grid # 2 (3030 elements). Iter: total non-linear iterations, GMRES: total number of linear
GMRES iterations, Time: total run time (min).

Block Line ILU MG-Block MG-Line MG-ILU

Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time

p = 0 31 45,543 1.5 31 14,672 0.9 31 7131 0.8 – – – – – – – – –
p = 1 25 69,468 4.9 24 19146 2.2 24 7658 1.1 24 13,228 3.3 24 4231 1.6 24 2408 1.1
p = 2 27 110,001 16.1 24 25,845 6.9 24 9034 2.9 24 17,642 12.3 24 4970 4.7 24 2901 2.9
p = 3 25 89,138 36.8 22 21576 16.2 22 6817 5.9 22 12,234 20.3 22 3997 10.3 22 2098 6.0

Table 13
Convergence results of the viscous NACA0005 test case with adapted grid # 4 (3433 elements). Iter: total non-linear iterations, GMRES: total number of linear
GMRES iterations, Time: total run time (min).

Block Line ILU MG-Block MG-Line MG-ILU

Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time

p = 0 32 47,949 1.7 32 15,437 1.0 32 7755 0.9 – – – – – – – – –
p = 1 31 172,474 8.9 24 23,862 3.3 24 9065 1.5 24 16876 5.3 24 4682 1.9 24 2567 1.2
p = 2 30 164,594 28.2 24 29,954 11.6 24 10,048 4.2 24 21368 18.1 24 5658 6.4 24 3118 3.6
p = 3 23 60,482 34.4 22 25,424 22.6 22 7673 7.9 22 12763 23.9 22 5004 16.6 22 2169 7.3

Table 14
Convergence results of the viscous NACA0005 test case with adapted grid # 6 (4694 elements). Iter: total non-linear iterations, GMRES: total number of linear
GMRES iterations, Time: total run time (min).

Block Line ILU MG-Block MG-Line MG-ILU

Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time

p = 0 32 56,198 2.6 32 16,827 1.5 32 8629 1.2 – – – – – – – – –
p = 1 37 327,309 17.6 25 34,588 6.0 25 12,976 2.6 25 26,244 10.4 25 6375 3.5 25 3446 2.1
p = 2 31 186,272 45.0 24 34,978 19.0 24 12,741 7.8 24 27,634 31.0 24 7042 11.7 24 3483 5.8
p = 3 24 64,508 50.5 22 20,308 27.7 22 7883 13.0 22 11,607 31.5 22 4891 26.5 22 2296 11.5

Table 15
Convergence results of the viscous NACA0005 test case with adapted grid # 8 (6020 elements). Iter: total non-linear iterations, GMRES: total number of linear
GMRES iterations, Time: total run time (min).

Block Line ILU MG-Block MG-Line MG-ILU

Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time

p = 0 31 80,053 5.1 30 20,356 2.8 30 9986 2.0 – – – – – – – – –
p = 1 45 624,315 60.5 26 48,556 16.6 25 17,031 7.2 25 32,911 23.2 25 8328 8.3 25 4315 4.3
p = 2 31 181,094 73.2 26 33,924 28.2 24 9585 9.3 25 27,661 48.2 24 5968 17.5 24 3256 8.6
p = 3 30 109,457 106.2 24 14,203 30.0 25 7225 20.2 29 37,082 97.3 25 5979 34.6 25 3370 24.3

3932 L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935
To achieve fast convergence for this viscous test case, it is necessary that the preconditioner sufficiently resolves the cou-
pling between elements in the boundary layer. Since the Block-Jacobi preconditioner ignores all inter-element coupling, the
restarted GMRES algorithm stalls and the linear system is not sufficiently solved such that several additional Newton iter-
ations are required to converge the non-linear residual. On the other hand, the Line-Jacobi and Block-ILU preconditioners
which make use of the lines of maximum coupling within the flow are able to sufficiently converge the linear system at each
Newton step. Hence, the same super-linear convergence of the non-linear residual is observed for both Line-Jacobi and
Block-ILU preconditioners.

As with the previous test cases, the use of the linear multigrid preconditioner significantly reduces the number of linear
iterations required to converge the linear system at each Newton step. The GMRES restart value is reached less often in the
case of the linear multigrid preconditioners despite the GMRES restart value being larger for the single-level preconditioners.
This ensures that the linear multigrid preconditioner with Block-Jacobi smoothing is able to solve the linear system suffi-
ciently to have essentially the same convergence of the non-linear residual as the Line-Jacobi and Block-ILU preconditioners.
On average fastest convergence in terms of CPU time is achieved using the linear multigrid preconditioner with Block-ILU
smoothing, which performs on average about 5% faster than the single-level Block-ILU preconditioner.



L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935 3933
6.3. Turbulent viscous subsonic flow over NACA0012 airfoil, M ¼ 0:25;a ¼ 0�;Re ¼ 106

The final test case is a Reynolds-Averaged Navier–Stokes (RANS) solution of a subsonic, M ¼ 0:25 flow over the NACA0012
airfoil at a Reynolds number of Re ¼ 106. The single equation Spalart–Allmaras turbulence model is used, where the source
terms are discretized using a dual-consistent formulation [35,34]. The flow solution is obtained on a sequence of higher-or-
der meshes using an output based adaptation scheme [32,34]. Convergence studies are performed on grids 2, 4, and 6 from
the adaptation procedure, where solutions are obtains for p = 0, 1, 2, and 3 using a hierarchical basis on each grid. The three
meshes for which convergence results are presented have 1209, 1522, and 3113 elements, respectively. Fig. 5 shows a por-
tion of the grid # 2 and the corresponding p ¼ 3 solution of the Mach number on this grid.

The solution procedure is initialized with the previously converged flow solution at lower p except for p ¼ 0 which is ini-
tialized using free-stream values. The GMRES restart values and convergence criteria are the same as for the previous test
case. The convergence data for the three grids are summarized in Tables 16–18.

For this RANS test case the non-linear residual history for p ¼ 1 differs significantly from p ¼ 2 and p ¼ 3, typically requir-
ing a larger number of non-linear iterations in order to obtain a converged solution. In addition the solution procedure fails
using the Block-Jacobi and Block-ILU preconditioners for grid #4 due to divergence of the non-linear solution algorithm. This
Table 16
Convergence results of the NACA0012 RANS test case with adapted grid # 2 (1209 elements). Iter: total non-linear iterations, GMRES: total number of linear
GMRES iterations, Time: total run time (min).

Block Line ILU MG-Block MG-Line MG-ILU

Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time

p = 0 51 68,596 1.9 51 24,872 1.7 51 13,490 1.6 – – – – – – – – –
p = 1 95 812,446 10.1 88 207,363 5.6 90 76,455 4.1 106 261,297 7.7 67 34,995 4.2 103 49,716 5.3
p = 2 59 230,845 14.7 53 56,324 7.2 53 16,859 4.1 53 27,918 7.9 53 15,960 6.5 53 8466 4.8
p = 3 56 167,661 27.1 59 167,066 29.7 52 14,068 7.3 53 36,097 24.0 52 14,662 15.1 52 7761 9.5

Table 17
Convergence results of the NACA0012 RANS test case with adapted grid # 4 (1522 elements). Iter: total non-linear iterations, GMRES: total number of linear
GMRES iterations, Time: total run time (min). ‘*’ denotes cases which did not converge.

Block Line ILU MG-Block MG-Line MG-ILU

Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time

p = 0 53 93,452 2.6 53 31,453 2.3 53 17,023 2.1 – – – – – – – – –
p = 1 * * * 104 352,881 9.6 * * * 100 321,138 11.6 100 147,480 9.5 87 29,364 5.5
p = 2 58 197,944 19.3 56 77,980 11.7 55 19,065 5.7 55 36,148 12.1 55 18,053 9.2 55 9400 6.5
p = 3 78 878,595 89.1 54 64,958 26.9 54 15,156 10.2 55 42,180 35.5 54 19,725 25.9 54 7712 12.4

Table 18
Convergence results of the NACA0012 RANS test case with adapted grid # 6 (3113 elements). Iter: total non-linear iterations, GMRES: total number of linear
GMRES iterations, Time: total run time (min). ‘*’ denotes cases which did not converge.

Block Line ILU MG-Block MG-Line MG-ILU

Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time Iter GMRES Time

p = 0 67 411,896 9.4 66 93,632 6.2 66 44,721 5.6 – – – – – – – – –
p = 1 104 1,777,595 44.1 101 754,669 27.9 105 118,884 13.2 101 305,972 24.4 106 92,106 17.2 105 47,713 14.4
p = 2 73 594,225 76.8 70 302,661 54.5 66 42,604 15.9 66 150,312 66.9 66 42,511 30.8 65 18,379 18.1
p = 3 93 1,620,620 250.5 * * * 58 21,007 25.1 69 148,697 139.9 61 38,265 73.4 62 14,052 34.6

Fig. 5. Computational grid and solution on grid # 2 for NACA0012 RANS test case (1209 elements, p ¼ 3).



3934 L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935
behaviour at p ¼ 1 may be due to the poor starting condition provided by the p ¼ 0 solution. In practice this problem may be
avoided during an adaptation procedure by starting with an initial solution interpolated from a converged solution on a pre-
vious grid.

The Block-ILU preconditioner performs significantly better than the other single-level preconditioners for this test case.
The Block-Jacobi solver takes many more non-linear iterations in order to converge the p ¼ 3 solution for grids #4 and #6
due to stalling of the restarted GMRES algorithm. Additionally the Line-Jacobi solver fails to converge the grid #6 case for
p ¼ 3. On the other and for the Block-ILU preconditioner, the GMRES restart value is reached in only half of the Newton iter-
ations and stalling does not occur when converging p ¼ 3 on grid #6.

As in the previous test cases, the use of the linear multigrid preconditioner significantly reduces the number of linear iter-
ations compared to the single-level preconditioners. For linear multigrid with Block-Jacobi and Line-Jacobi smoothing, this
ensures that a better solution update is obtained prior to restarting the GMRES algorithm. Hence, linear multigrid with both
Block-Jacobi smoothing and Line-Jacobi smoothing generally require the same number of non-linear iteration as the Block-
ILU preconditioner. Though the linear multigrid preconditioner with Block-ILU smoothing significantly reduces the number
linear iterations compared to the single-level Block-ILU preconditioner, fastest convergence in terms of CPU time is generally
seen by the single-level Block-ILU preconditioner.
7. Conclusions and discussion

An in-place Block-ILU(0) factorization algorithm has been developed, which has been shown to reduce both the memory
and computational cost over the traditional dual matrix storage format. A reordering technique for the Block-ILU(0) factor-
ization, based upon lines of maximum coupling in the flow, has also been developed. The results presented show that this
reordering technique significantly reduces the number of linear iterations required to converge compared to standard reor-
dering techniques, especially for viscous test cases.

A linear p-multigrid algorithm has been developed as a preconditioner to GMRES. The linear multigrid preconditioner is
shown to significantly reduce the number of linear iterations and CPU times required to obtain a converged solution com-
pared to a single-level Block-Jacobi or element Line-Jacobi preconditioner. The linear p-multigrid preconditioner with Block-
ILU(0) smoothing also reduces the number of linear iterations relative to the single-level Block-ILU(0) preconditioner though
not necessarily the total CPU time.

The solution of complex 3D problems necessitates the use of parallel computing. The development of an efficient sol-
ver for DG discretizations must therefore necessarily consider the implications of parallel computing. Except for the
Block-Jacobi preconditioners, the preconditioners presented have some inherent serialism as they require elements to
be traversed sequentially. Thus, while the Block-Jacobi preconditioners can be trivially parallelized, the Line-Jacobi and
Block-ILU methods are more difficult. In this paper only a serial implementation is presented, while a basic parallel
implementation has been discussed in [16]. While an efficient parallel implementation has yet to be developed, the pre-
conditioners presented in this work may serve as local solvers for a more sophisticated parallel solver based on domain
decomposition methods.

Acknowledgments

The authors would like to thank the anonymous reviewers for their suggestions, which significantly improved this paper.
This work was partially supported by funding from The Boeing Company with technical monitor Dr. Mori Mani.

References

[1] W. Anderson, R. Rausch, D. Bonhaus, Implicit multigrid algorithms for incompressible turbulent flows on unstructured grids, No. 95-1740-CP, in:
Proceedings of the 12th AIAA CFD Conference, San Diego CA, 1995.

[2] S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, Petsc users manual, Tech. Rep. ANL-95/11
– Revision 2.1.5, Argonne National Laboratory, 2004.

[3] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Web page, 2007. <http://www.mcs.anl.gov/
petsc>.

[4] S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in: E. Arge, A.M.
Bruaset, H.P. Langtangen (Eds.), Modern Software Tools in Scientific Computing, Birkhäuser Press, 1997.

[5] T. Barth, Numerical methods for conservation laws on structured and unstructured meshes, VKI March 2003 Lecture Series, 2003.
[6] F. Bassi, S. Rebay, High-order accurate discontinuous finite element solution of the 2d Euler equations, Journal of Computational Physics 138 (2) (1997)

251–285.
[7] F. Bassi, S. Rebay, A high-order discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations, Journal of

Computational Physics 131 (1997) 267–279.
[8] F. Bassi, S. Rebay, GMRES discontinuous Galerkin solution of the compressible Navier–Stokes equations, in: K. Cockburn, Shu (Eds.), Discontinuous

Galerkin Methods: Theory, Computation and Applications, Springer, Berlin, 2000, pp. 197–208.
[9] F. Bassi, S. Rebay, Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations, International Journal for

Numerical Methods in Fluids 40 (2002) 197–207.
[10] M. Benzi, D.B. Szyld, A. van Duin, Orderings for incomplete factorization preconditioning of nonsymmetric problems, SIAM Journal on Scientific

Computing 20 (5) (1999) 1652–1670.
[11] M. Blanco, D.W. Zingg, A fast solver for the Euler equations on unstructured grids using a Newton-GMRES method, AIAA Paper 1997-0331, January,

1997.

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc


L.T. Diosady, D.L. Darmofal / Journal of Computational Physics 228 (2009) 3917–3935 3935
[12] X.-C. Cai, W.D. Gropp, D.E. Keyes, M.D. Tidriri, Newton–Krylov–Schwarz methods in CFD, in: Proceedings of the International Workshop on Numerical
Methods for the Navier–Stokes Equations, 1995.

[13] B. Cockburn, G. Karniadakis, C. Shu, The development of discontinuous Galerkin methods, Lecture Notes in Computational Science and Engineering, vol.
11, Springer, 2000.

[14] B. Cockburn, C.-W. Shu, Runge–Kutta discontinuous Galerkin methods for convection-dominated problems, Journal of Scientific Computing (2001)
173–261.

[15] L. Diosady, D. Darmofal, Discontinuous Galerkin solutions of the Navier–Stokes equations using linear multigrid preconditioning, AIAA Paper 2007-
3942, 2007.

[16] L.T. Diosady, A linear multigrid preconditioner for the solution of the Navier–Stokes equations using a discontinuous Galerkin discretization, Masters
thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, May 2007.

[17] V. Dolejší, M. Feistauer, A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow, Journal
of Computational Physics 198 (1) (2004) 727–746.

[18] K. Fidkowski, D. Darmofal, An adaptive simplex cut-cell method for discontinuous AIAA Paper 2007-3941, Massachusetts Institute of Technology, 2007.
[19] K.J. Fidkowski, A high-order discontinuous Galerkin multigrid solver for aerodynamic applications, Masters Thesis, Massachusetts Institute of

Technology, Department of Aeronautics and Astronautics, June 2004.
[20] K.J. Fidkowski, D.L. Darmofal, Development of a higher-order solver for aerodynamic applications, AIAA Paper 2004-0436, January 2004.
[21] K.J. Fidkowski, T.A. Oliver, J. Lu, D.L. Darmofal, p-multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier–

Stokes equations, Journal of Computational Physics 207 (1) (2005) 92–113.
[22] B.T. Helenbrook, D. Mavriplis, H.L. Atkins, Analysis of p-multigrid for continuous and discontinuous finite element discretizations, AIAA Paper 2003-

3989, 2003.
[23] K. Hillewaert, N. Chevaugeon, P. Geuzaine, J.-F. Remacle, Hierarchic multigrid iteration strategy for the discontinuous Galerkin solution of the steady

Euler equations, International Journal for Numerical Methods in Fluids 51 (9) (2005) 1157–1176.
[24] C.T. Kelley, D.E. Keyes, Convergence analysis of pseudo-transient continuation, SIAM Journal of Numerical Analysis 35 (2) (1998) 508–523.
[25] D.A. Knoll, D.E. Keyes, Jacobian-free Newton–Krylov methods: a survey of approaches and applications, Journal of Computational Physics 193 (1)

(2004) 357–397.
[26] H. Luo, J.D. Baum, R. Löhner, A p-multigrid discontinuous Galerkin method for the Euler equations on unstructured grids, Journal of Computational

Physics 211 (1) (2006) 767–783.
[27] J. Mavriplis, On convergence acceleration techniques for unstructured meshes, AIAA Paper 1998-2966, 1998.
[28] D.J. Mavriplis, An assessment of linear versus nonlinear multigrid methods for unstructured mesh solvers, Journal of Computational Physics 175 (1)

(2002) 302–325.
[29] C.R. Nastase, D.J. Mavriplis, High-order discontinuous Galerkin methods using a spectral multigrid approach, AIAA Paper 2005-1268, January 2005.
[30] C.R. Nastase, D.J. Mavriplis, High-order discontinuous Galerkin methods using an hp-multigrid approach, Journal of Computational Physics 213 (1)

(2006) 330–357.
[31] A. Nejat, C. Ollivier-Gooch, Effect of discretization order on preconditioning and convergence of a higher-order unstructured Newton–Krylov solver for

inviscid compressible flows, AIAA Paper 2007-0719, January 2007.
[32] T. Oliver, D. Darmofal, An unsteady adaptation algorithm for discontinuous Galerkin discretizations of the RANS equations, AIAA Paper 2007-3940,

2007.
[33] T.A. Oliver, Multigrid solution for high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations, Masters Thesis,

Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, June 2004.
[34] T.A. Oliver, A higher-order, adaptive, discontinuous Galerkin finite element method for the Reynolds-averaged Navier–Stokes equations, Ph.D. Thesis,

Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, June 2008.
[35] T.A. Oliver, D.L. Darmofal, An analysis of dual consistency for discontinuous Galerkin discretization of source terms, ACDL report, Massachusetts

Institute of Technology (2007).
[36] P.-O. Persson, J. Peraire, An efficient low memory implicit DG algorithm for time dependent problems, AIAA Paper 2006-0113, 2006.
[37] P.-O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, AIAA Paper 2006-0112, 2006.
[38] P.-O. Persson, J. Peraire, Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier–Stokes equations, SIAM Journal for

Scientific Computing 30 (6) (2008) 2709–2722.
[39] A. Pueyo, D.W. Zingg, An efficient Newton-GMRES solver for aerodynamic computations, AIAA Paper 1997–1955, June 1997.
[40] P. Rasetarinera, M.Y. Hussaini, An efficient implicit discontinuous spectral Galerkin method, Journal of Computational Physics 172 (1) (2001) 718–738.
[41] P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics 43 (2) (1981) 357–372.
[42] Y. Saad, Iterative methods for sparse linear systems, Society for Industrial and Applied Mathematics (1996).
[43] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and

Statistical Computing 7 (3) (1986) 856–869.
[44] L.N. Trefethen, D. Bau, Numerical linear algebra, Society for Industrial and Applied Mathematics (1997).


	Preconditioning methods for discontinuous Galerkin solutions of the Navier–Stokes equations
	Introduction
	Solution method
	DG discretization
	Linear system
	Linear solution method
	Residual tolerance criterion

	In-place preconditioning
	Stationary iterative methods
	Block-Jacobi solver
	Line-Jacobi solver
	Block-ILU solver
	Timing performance
	In-place ILU factorization of general matrices

	ILU reordering
	Line reordering
	Numerical results

	Linear multigrid
	Linear multigrid algorithm
	Memory considerations

	Numerical results
	Inviscid transonic flow over NACA0012 airfoil, M=0.75, \alpha =2 ^{\circ} 
	Viscous subsonic flow over NACA0005 airfoil, M=0.4, \alpha =0 ^{\circ} ,Re=50000
	Turbulent viscous subsonic flow over NACA0012 airfoil, M=0.25, \alpha =0 ^{\circ} ,Re= {10}^{6}

	Conclusions and discussion
	Acknowledgments
	References


